SANITAS
Sustainable and Integrated Urban Water System Management

Towards Energy-Efficient MBR Systems: Challenges and Opportunities

SANITAS E-SEMINAR SERIES

Marina Arnaldos
Acciona Water, R&D Department
Outline

1. Introduction

2. Approaches to MBR Energy Optimization
 1. Understanding Fouling Occurrence
 2. Modeling Approaches
 3. Heuristical Approaches

3. Opportunities

4. Points for Discussion
What is a Membrane Bioreactor?

- Combination of a membrane process (micro/ultra filtration) with a suspended growth bioreactor
MBR Technology Drivers

- Water reuse
- Increasingly stringent legislation
- Footprint savings

(From Santos et al., 2011)
MBR Technology Challenges

• Higher operational and capital costs as compared to conventional activated sludge (CAS)

Cost Ratios (MBR/CAS)

<table>
<thead>
<tr>
<th></th>
<th>2350 PE</th>
<th>37350 PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Cost</td>
<td>2</td>
<td>0.63</td>
</tr>
<tr>
<td>Operating Costs per Year</td>
<td>2,27</td>
<td>1.34</td>
</tr>
</tbody>
</table>
Operational Costs in MBR Systems

Operational Costs
- Energy: 84%
- Sludge Trtm/Dis: 12%
- Chemicals: 4%

Energy Consumption
- Membrane Aeration: 36%
- Biology Aeration: 21%
- Feed Pumps: 15%
- Permeate Pumps: 11%
- Rest: 17%

(Adapted from Judd, 2011)
(Adapted from Krzeminski, 2013)
Aeration in MBR Operation

AERATION CHARACTERISTICS
- Flow Rate
- Aerator Size
- Aerator Area
- Bubble Size
- Aeration Intensity

BULK BIOMASS CHARACTERISTICS
- Floc Size
- Viscosity
- MLSS
- O₂ Transfer
- Loading Rate

MEMBRANE OPERATION
- Permeability

(Adapted from Judd, 2011)
Approaches to MBR Energy Optimization

• Understanding fouling occurrence
 – What causes fouling? How does it cause fouling? What mitigation strategies can we draw from this knowledge?

• Modeling approaches
 – What is the optimal operation point?

• Heuristical approaches
 – What is experience with full-scale MBR systems teaching us? What energy-efficiency strategies are actually working?
Understanding Fouling Occurrence

- **Feed characteristics**
 - EPS: free, bound
 - Floc characteristics: size, structure
 - Bulk characteristics: viscosity, rheology, hydrophobicity

- **Biomass characteristics**
 - **Fouling**:
 - Reversible
 - Irreversible
 - **Clogging**:
 - Membrane channels
 - Aerator ports

- **OPERATION**
 - Retention time
 - Hydraulic
 - Solids
 - Hydraulics
 - Flux
 - TMP
 - Cleaning
 - Physical
 - Chemical

- **DESIGN**
 - Membrane module characteristics
 - Pore size, porosity, shape
 - Surface characteristics
 - Charge, hydrophobicity
 - Configuration
 - Geometry
 - Dimensions

- **Aeration**
 - Design (port size)
 - Mean flow rate
 - Pulse rate

(Adapted from Judd, 2011)
Understanding Fouling Occurrence

- Research has underlined the significance of several factors on fouling propensity:

<table>
<thead>
<tr>
<th>Environmental</th>
<th>Operational</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Feedwater composition and strength</td>
<td>• Solids retention time/MLSS concentration (+)</td>
</tr>
<tr>
<td>• Influent dynamics (-)</td>
<td>• Aeration</td>
</tr>
<tr>
<td>• Temperature (+)</td>
<td>• Unsteady-state operation (-)</td>
</tr>
</tbody>
</table>

- Not one single factor can predict fouling propensity, but rather a combination of various environmental and operational factors.
Fouling and Energy Efficiency

- **Appropriate feed pretreatment** (screening)
- **Feedback control systems** to optimize the use of anti-fouling strategies:
 - Control of biomass quality/properties through SRT adjustment, or chemical addition (coagulants, adsorbents)

Control Variables
- Permeate pump (on/off or speed)
- Relaxation frequency, duration
- Membrane aeration rate, duration
- Backflush frequency, duration and flux

Input Variables
- TMP, permeate flow rate, temperature (permeability)
- Filterability
- Growth of biofilm, concentration polarization phenomena

Less Commonly
Modeling Approaches

- MBRs consist of several subprocesses with a high degree of coupling
- Energy optimization of full-scale systems can be approached through *integrated mathematical modeling of the subprocesses*
- Of especial importance is the inclusion of *appropriate process and membrane aeration models*
 - **Process aeration**: coarse/fine bubble; relationship between MLSS concentration and oxygen transfer efficiency
 - **Membrane aeration**: effect of membrane aeration on permeability (*less common*)
Modeling Approaches

- **Steady-state models**: general energetic costs of aeration requirements at different operational points

- **Dynamic models**: more accurate energy predictions of different operational points

- General strategies for energy reduction:
 - **Lower SRT operation**: need to consider sludge treatment/hauling costs!
 - **Lower membrane aeration**: need to consider effects on permeability!
Heuristical Approaches

- Operational parameters influencing MBR energy efficiency in full-scale plants:

- **Hydraulic utilization of membranes**

 (From Krzeminski, 2013)

 (From Palmowski et al., 2012)

- **Aeration strategy**
Heuristical Approaches

• **Energy optimization strategies:**

• **Increasing operational fluxes:**
 – Internal/external equalization
 – Match operating MBR lines to incoming flow
 – Temporary increases in operational fluxes when filter performance is good (e.g. high temperatures)

• **Decreasing membrane aeration**
 – Proportional/sequencing/intermittent aeration rather than continuous aeration
Opportunities

• New aeration systems
 – Spherical cap sparging

• New cleaning/fouling mitigation methods
 – Mechanical with granular medium
 – Ultrasound/membrane vibration

• Emerging technologies
 – Forward osmosis MBRs

(From Higgins, 2011)

(From Achilli et al., 2009)
Points for Discussion...

• Is really energy efficiency the sole limiting factor in widespread MBR implementation?

Results of Survey of MBR Practitioners

(From Santos et al., 2011)
Points for Discussion...

• What should be the focus of research moving forward?
 – Will further research in the mechanisms of fouling shed some light in the efficient operation of MBRs?
 – Or should research move to more macroscopic approaches such as mathematical modeling based on empirical relationships?
Thank you!

www.sanitas-itn.eu

The research leading to these results has received funding from the People Program (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013 under REA agreement 289193.

This presentation reflects only the author’s views and the European Union is not liable for any use that may be made of the information contained therein.
Additional Slides

Comparative of Energy Consumption Between Treatment Technologies

<table>
<thead>
<tr>
<th>Treatment option</th>
<th>Energy use (kWh⁻¹ m⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS</td>
<td>0.15</td>
</tr>
<tr>
<td>CAS-BAF</td>
<td>0.25</td>
</tr>
<tr>
<td>CAS-MF/UF</td>
<td>0.35–0.5</td>
</tr>
<tr>
<td>MBR</td>
<td>0.75–1.5ᵃ</td>
</tr>
</tbody>
</table>

ᵃPower consumption range for large- to smaller-scale plants.

(From Hai and Yamamoto, 2011)